277 research outputs found

    An Investigation of the Interrelationship between Physical Stiffness and Perceived Roughness

    Get PDF
    Research in the area of haptics and how we perceive the sensations that come from haptic interaction started almost a century ago, yet there is little fundamental knowledge as to how and whether a change in the physical values of one characteristic can alter the perception of another. The increasing availability of haptic interaction through the development of force-feedback devices opened new possibilities in interaction. It allowed for accurate real time change of physical attributes on virtual objects in order to test the haptic perception changes to the human user. An experiment was carried out to ascertain whether a change in the stiffness value would have a noticeable effect on the perceived roughness of a virtual object. Participants were presented with a textured surface and were asked to estimate how rough it felt compared to a standard. What the participants did not know was that the simulated texture on both surfaces remained constant and the only physical attribute changing in every trial was the comparison object’s surface stiffness. The results showed that there is a strong relationship between physical stiffness and perceived roughness that can be accurately described by a power function. Furthermore, the roughness magnitude estimations showed an increase with increasing stiffness values. The conclusion is that there are relationships between these parameters, but that further work is required to validate those relationships

    Human haptic perception in virtual environments: An investigation of the interrelationship between physical stiffness and perceived roughness.

    Get PDF
    Research in the area of haptics and how we perceive the sensations that come from haptic interaction started almost a century ago, yet there is little fundamental knowledge as to how and whether a change in the physical values of one characteristic can alter the perception of another. The increasing availability of haptic interaction through the development of force-feedback devices opens new possibilities in interaction, allowing for accurate real time change of physical attributes on virtual objects in order to test the haptic perception changes to the human user. An experiment was carried out to ascertain whether a change in the stiffness value would have a noticeable effect on the perceived roughness of a virtual object. Participants were presented with a textured surface and were asked to estimate how rough it felt compared to a standard. What the participants did not know was that the simulated texture on both surfaces remained constant and the only physical attribute changing in every trial was the comparison object’s surface stiffness. The results showed that there is a strong relationship between physical stiffness and perceived roughness that can be accurately described by a power function, and the roughness magnitude estimations of roughness showed an increase with increasing stiffness values. The conclusion is that there are relationships between these parameters, where changes in the physical stiffness of a virtual object can change how rough it is perceived to be in a very clear and predictable way. Extending this study can lead to an investigation on how other physical attributes affects one or more perceived haptic dimensions and subsequently insights can be used for constructing something like a haptic pallet for a haptic display designer, where altering one physical attribute can in turn change a whole array of perceived haptic dimensions in a clear and predictable way

    A Comparison of CNN and Classic Features for Image Retrieval

    Full text link
    Feature detectors and descriptors have been successfully used for various computer vision tasks, such as video object tracking and content-based image retrieval. Many methods use image gradients in different stages of the detection-description pipeline to describe local image structures. Recently, some, or all, of these stages have been replaced by convolutional neural networks (CNNs), in order to increase their performance. A detector is defined as a selection problem, which makes it more challenging to implement as a CNN. They are therefore generally defined as regressors, converting input images to score maps and keypoints can be selected with non-maximum suppression. This paper discusses and compares several recent methods that use CNNs for keypoint detection. Experiments are performed both on the CNN based approaches, as well as a selection of conventional methods. In addition to qualitative measures defined on keypoints and descriptors, the bag-of-words (BoW) model is used to implement an image retrieval application, in order to determine how the methods perform in practice. The results show that each type of features are best in different contexts.Comment: 5 pages, 3 figures, 3 tables, CBMI 201

    Wearable Haptic Devices For Post- Stroke Gait Rehabilitation

    Get PDF
    Wearable technologies, in the form of small, light and inconspicuous devices, can be designed to help individuals suffering from neurological conditions carry out regular rehabilitation exercises. Current research has shown that walking to a rhythm can lead to significant improvements in various aspects of gait. Our primary aim is to provide a suitable, technology based intervention to enhance gait rehabilitation of people with chronic and degenerative neurological health conditions (such as stroke). This intervention will be in the form of small, lightweight, wireless, wearable devices the user can take out of the clinic, extending their rehabilitation to their own home setting. The devices can deliver a series of vibrations at a steady rhythm giving the patient a more stable and symmetric pace of walking. The simplest version of this approach typically comprise of a very small network of just two nodes and a central controller. The existing prototypes (called the Haptic Bracelets) capture and analyse motion data in real time to provide adaptive haptic (through vibrations) cueing. In the future and after more refinement, the system could allow a single therapist to monitor and advise groups of stroke survivors undergoing therapy sessions
    • …
    corecore